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Abstract

Online insurance is a new type of e-commerce with exponen-
tial growth. An effective recommendation model that maxi-
mizes the total revenue of insurance products listed in mul-
tiple customized sales scenarios is crucial for the success of
online insurance business. Prior recommendation models are
ineffective because they fail to characterize the complex re-
latedness of insurance products in multiple sales scenarios
and maximize the overall conversion rate rather than the to-
tal revenue. Even worse, it is impractical to collect training
data online for total revenue maximization due to the business
logic of online insurance. We propose RevMan, a Revenue-
aware Multi-task Network for online insurance recommenda-
tion. RevMan adopts an adaptive attention mechanism to al-
low effective feature sharing among complex insurance prod-
ucts and sales scenarios. It also designs an efficient offline
learning mechanism to learn the rank that maximizes the ex-
pected total revenue, by reusing training data and model for
conversion rate maximization. Extensive offline and online
evaluations show that RevMan outperforms the state-of-the-
art recommendation systems for e-commerce.

Introduction
Technological advances such as artificial intelligence and
mobile computing have accelerated the digitization of the
insurance industry. Online insurance, which sells insurance
products via mobile apps, has emerged as a new sales mode
to reach a wide range of customers with prompt and flexible
services. Reports predict an exponential growth in the global
online insurance market (Mordor 2019).

To provide personalized insurance products to customers
without overwhelming their attention, online insurance com-
panies such as Tencent WeSure (Tencent 2017), Acko Gen-
eral Insurance (Acko 2017), PingAn JinGuanjia (PingAn
2016) etc. often group their complex and diverse insurance
products into sales scenarios, each targeting a different cus-
tomer category. Fig. 1 shows an example of four sales sce-
narios in the mobile app of an online insurance company.
It is crucial that the recommended insurance products in all
the sales scenarios will convert to actual buying as much as
possible to maximize the total revenue.

*Corresponding author.
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Screenshots of sales scenarios in the mobile app
of an insurance company: (a) activity page for new users;
(b) special sale page for loyal customers; (c) products cus-
tomized for parents; (d) products customized for children.

Compared with generic recommendation for e-commerce,
designing an effective recommendation strategy for online
insurance products encounters unique challenges due to the
product complexity and business logic of online insurance.
On one hand, data sparsity is severe in online insurance be-
cause of the common misunderstanding of the general public
on insurance products (Bi et al. 2020). Compared with other
daily goods, there are considerably fewer trading data of on-
line insurance products to train an accurate recommenda-
tion model. Even worse, the few (compared with the amount
of different products and customers) trading data available
come from different sales scenarios. The data distributions
of different sales scenarios often vary, making the training
dataset for each sales scenario even smaller. On the other
hand, there is a lack of training data for maximizing the to-
tal revenue. In the historical trading data, insurance products
are ranked according to the expected conversion rate, thus
failing to reflect the actual buying if the products are ranked
based on the expected revenue. Nevertheless, it is expensive
or impractical to collect new training samples where prod-
ucts are ranked for this goal due to the business logic of on-
line insurance companies.

A natural solution to data sparsity is to jointly train mul-
tiple correlated tasks (sales scenarios in our case) via multi-
task learning (Ruder 2017). Multi-task learning proves ef-

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

303



Input

Fine tune layer
MLP1 MLPn

Embedding layer

Interaction Layer
Static Sharing

Rank

Conversion Rate

Rank

Conversion Rate

Input

Fine tune layer
MLP1 MLPn

Embedding layer

Interaction Layer
Attentive Adaptive Sharing

Stage I Stage II
(a) CR-oriented multi-task recommendation (b) Revman structure

Discount Estimator

Offline Data Validation

Conversion 
Rate Model

Product Price

trial feedback

Discount factor γ 

Learning Process

Figure 2: An illustration of previous CR-oriented multi-task recommendation models and RevMan. (a) Typical structure of
existing multi-task recommendation models that maximize the conversion rate. (b) Workflow of RevMan. At stage I, RevMan
utilizes a selective attentive multi-task network (SAMN) to learn feature representations of different tasks for modeling con-
version rate. At stage II, RevMan learns from offline data the ranks that maximizes the total revenue via a discount factor γ. It
conducts trials on the offline data and utilizes the results as feedbacks to optimize γ. The products are re-ranked based on the
product of γ and conversion rate to maximize the total revenue.

fective in recommendation systems for videos (Ma et al.
2018a), web search (Bai et al. 2009), online advertising (Pan
et al. 2019), etc. It is also promising for online insurance rec-
ommendation because insurance products and sales scenar-
ios are correlated. For example, a customer who buys a car
accident insurance may also buy a health insurance. More-
over, over 40% of potential customers place high priority to
insurance products of children and parents, which are often
listed in different sales scenarios (Mordor 2019).

However, prior multi-task learning proposals for online
product recommendation are sub-optimal for online insur-
ance recommendation. (i) The feature sharing mechanisms
in previous studies (Hu et al. 2018; Ma et al. 2019; Pan et al.
2019; Ma et al. 2018b; Wang et al. 2019a) fail to model
the complex task relatedness in insurance products. Existing
multi-task recommendation systems mainly adopt a three-
layer design: an embedding layer, an interaction layer and
a fine tune layer (Ruder 2017; Zhang and Yang 2017), as
shown in Fig. 2(a). Feature sharing takes place either in the
embedding layer (Ma et al. 2018b; Wang et al. 2019a) or in
the interaction layer using fixed weights for each task pair,
i.e., static feature sharing (Hu et al. 2018; Ma et al. 2019;
Pan et al. 2019). Feature sharing in the embedded layer en-
forces only simple, low-level feature sharing, while static
sharing cannot characterize the diversity in task relatedness
due to difference in user behaviours across sales scenarios
(Yosinski et al. 2014). (ii) Most existing online product rec-
ommendation systems focus on conversion rate, rather than
the total revenue (Kitada, Iyatomi, and Seki 2019; Bai et al.
2009; Chapelle et al. 2010; Zhang et al. 2019). Recommend-
ing high conversion-rate products does not necessarily max-
imize the total revenue, because products with high conver-
sion rates seldom have high prices (Zhang et al. 2016).

To this end, we design RevMan, the first Revenue-aware
Multitask recommendation network for online insurance
recommendation. As mentioned before, it is impractical to
collect new training samples for total revenue in vivo. We

can only rely on historical data ranked according to the con-
version rate. We tackle this problem by transforming the
objective of maximizing the total revenue to maximizing
a modified version of conversion rate. Specifically, we as-
sign a discount factor γ to each conversion rate such that
ranking products based on the discounted conversion rate is
equivalent to ranking products based on the expected rev-
enue. Then a recommender system that maximizes the (dis-
counted) conversion rate also maximizes the total revenue.
To realize this idea, we need to address the questions below.

• How to learn an effective multi-task model for conversion
rate from sparse historical data of multiple sales scenar-
ios? Our solution is SAMN, a selective attentive multi-
task network to maximize the conversion rate. Instead of
feeding the same training sample for all tasks as in previ-
ous studies, it adaptively utilizes the embedding vector of
the training sample for different tasks.

• How to define the discount factor γ such that maximiz-
ing the discounted conversion rate also maximizes the to-
tal revenue? Since it is difficult to derive a closed-form
mapping from the conversion rate to the total revenue, we
learn the discount factor via offline estimation. Specif-
ically, we simulate revenue-based ranking by assigning
different γ to the conversion rate and test the new rankings
on the historical data to collect revenue estimations. This
forms a sequential decision process and thus we adopt re-
inforcement learning to learn the policies to assign dis-
count factors that maximize the total revenue.

Our main contributions and results are as follows:

• To the best of our knowledge, RevMan is the first recom-
mendation system that aims to maximize the total revenue
for online insurance products.

• We design a two-stage model which (i) optimizes the con-
version rates from sparse training data of multiple sales
scenarios and (ii) learns to maximize the total revenue
without collecting revenue-ranked training data.
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• We evaluate RevMan via extensive offline and online ex-
periments on real-world online insurance platforms. Of-
fline experimental results show an improvement of 0.62%
in average AUC and 7.05% in revenue over the state-of-
the-arts (Mcmahan et al. 2013; Cheng et al. 2016; Ma
et al. 2018b,a,a). A 7-day real-world A/B test also vali-
dates the effectiveness of RevMan in both modeling con-
version rate of all tasks and increasing the total revenue.

Primer on Total Revenue
Before diving into the details of design, we first present the
primer on total revenue. In online retailing business, the to-
tal revenue is typically calculated based on the Gross Mer-
chandise Volume (GMV), which is the total dollars of sold
products in expectation (Bi et al. 2020; Pei et al. 2019):

Rev =
∑
∀i,j

Ij(i)CR ∗ CRj(i) ∗ P (i) (1)

where I , CR and P are the impression, conversion rate and
price of product i in task j, respectively. By default, we treat
CRj(i) as the average conversion rate for impressed product
i over all users, and set P (i) identical for different tasks (Pei
et al. 2019). ICR is the impression based on the rank of CR
and Ij(i)CR is the summation of Iju(i)CR on all user u. For
different ranks, the conversion rate of the same product may
vary due to position bias, leading to different CRj(i)(Guo
et al. 2019). For each user u, Iju(i)CR is defined as:

Iju(i)CR =

{
1, rank(CRj

u(i)) ≤ M j

0, otherwise
(2)

where M j is the number of impressed products in task j and
rank is the reverse sort algorithm. As mentioned before, a
task refers to a recommendation task in each sales scenario.

We make two observations from Eq. (1) and Eq. (2).

• A recommendation model that maximizes the conversion
rates {CRj

u(i)} may not maximize the total revenue be-
cause (i) the relationship between conversion rates and to-
tal revenue is complex and (ii) the impression is based on
the ranks of conversion rates rather than revenue.

• A model that maximizes the total revenue may be learned
through samples collected for maximizing the conversion
rate. This is because the rank of each product can be a
bridge to estimate the relationship between I and CR, i.e.,
we can obtain Iju(i) for each rank result on CRj

u(i). If we
can simulate different ranks with CRj

u(i), then we can
obtain a series of corresponding E[Rev] to find the way
to maximize the total revenue.

To obtain an effective model that maximizes the total rev-
enue on basis of a model that optimizes the conversation
rate, we need to (i) first model conversion rate for differ-
ent tasks and (ii) design a method to learn the optimal ranks,
which leads to the design of RevMan.

RevMan Design
Overview
RevMan consists of two stages to sequentially (i) model the
conversion rate for different tasks and (ii) utilize the conver-
sion rate to estimate the maximized revenue (see Fig. 2(b)).

Context User Product
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Figure 3: Architecture of Selective Attentive Multi-task Net-
work (SAMN). Its key novelty is an attentive adaptive fea-
ture sharing mechanism. Specifically, an attention unit array
is used to control the knowledge sharing flow among tasks
based on the input from each task.

• Stage I: SAMN. We design a selective attentive multi-
task network (SAMN) to adaptively share feature embed-
ding among different tasks. SAMN makes full use of the
sparse data by modeling the complex task relatedness and
sharing useful feature representations among tasks.

• Stage II: Discount Estimator. The discount estimator
learns a discount factor γ on CR by simulating the im-
pact of ranks such that the total revenue is maximized.

SAMN Design
SAMN adopts the three-layer architecture in mainstream
multi-task recommendation systems (Ruder 2017; Zhang
and Yang 2017), which consists of an embedding layer, an
interaction layer and a fine tune layer. SAMN mainly differs
from prior studies in the interaction layer (see Fig. 3).

Embedding Layer It converts raw samples into embed-

ding vectors. A raw sample i from task j is a triad x̂j
i =

{u, prd, ctx}. u is user related features such as age, sexual-
ity, and interest features, such as buy history, view records,
etc. prd is the product features such as name, type, coverage,
etc. ctx is the contextual features such as time, scenario ID,
impression position, etc. Notice that the impression position
is used in training while hold out for prediction to alleviate
bias (Guo et al. 2019). Scenario ID is also used in the fol-

lowing layers to decide the activation route. We can write x̂j
i

as a multi-hot vector:

x̂j
i = [0, 0, ..., 1︸ ︷︷ ︸

user

, 0, 1, ..., 0︸ ︷︷ ︸
product

, 0, 1, ..., 1︸ ︷︷ ︸
context

]
(3)

Then the embedded vector xj
i can be calculated as:

xj
i = x̂j

i ∗ embT ∈ R
D×K (4)
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where ∗ is element-wise multiplication, emb ∈ R
D×K is

the embedding dictionary, D is the feature space size and K
is the embedding vector length. As in previous studies (Ma
et al. 2018b,a), we share the embedding dictionary across
different tasks given overlapped feature space.

Interaction Layer This layer consists of two main fea-
ture learning subnetworks. One is the task specific net-
work array (TSNA) and the other is general expert network
(GEN). TSNA learns task-specific feature representations,
while GEN learns general feature representations.

TSNA is an array of task-oriented multi-layer perceptrons
(MLPs) to learn the specific feature representations for each
task. By default, we set the number of MLPs to the task num-
ber based on the fact that the data distribution differs among
tasks. Accordingly, the structures of components in TSNA
can be tuned separately given different data distributions.
Notice that TSNA is a general framework and other meta
recommendation structure, like Wide&Deep (Cheng et al.
2016), deepFM (Guo et al. 2017), can be also applied in
TSNA instead of MLP. In order to learn the task-specific
features, we design a router for selective activation. Specif-

ically, the router will direct each embedding vector xj
i to

the corresponding MLP, based on the contextual feature ctx.

Then the output of TSNA FT (x
j
i ) can be calculated as:

FT (x
j
i ) =

{
Tk(x

j
i ) k = j

0 otherwise
(5)

where Tk is the output of kth MLP in TSNA.
Different from TSNA, GEN is designed to learn global

feature representations from all tasks. To extract richer fea-
ture representations from different tasks, we utilize the idea
from (Vaswani et al. 2017) and design an array of subnet-
works, i.e., gi, as the inner structure of GEN. That is

G(xj
i ) = [g0(x

j
i ), g1(x

j
i ), ..., gen(x

j
i )] (6)

where G is the concatenated output of each component in
GEN and en is the total number of gk. By default, we use
MLP as the inner structure. In GEN, each gk only focuses

on a specific range of xj
i , so that feature representations in

different space can be extracted more explicitly, i.e.,

xj
i = [a1, ..., al0︸ ︷︷ ︸

g0

, ..., aD·K−len+1, ..., aD·K︸ ︷︷ ︸
gen

]
(7)

where the focusing rage lk can be adaptively tuned under
different task settings. By default, we set lk as multiples of
K to align with the embedding vectors.

To incorporate the output of GEN in TSNA, we design an
array of bi-linear attention units to extract useful knowledge
with the help of FT for each task j. By default, we set the
number of attention units the same with task number. Ac-
cordingly, the weight vector wj can be calculated as:

aj = FT (x
j
i ) ∗W ∗G(xj

i )
T ∈ R

1×en

wj = [wj
1, w

j
2, ..., w

j
en ]

wj
i =

exp(aji )∑
∀aj

k∈aj exp(a
j
k)

(8)

where W is the weight-mapping matrix and wj
i is the weight

for each vector in G. Then we can derive the output of the

interaction layer Q(xj
i ) as follows:

Q(xj
i ) = [FT (x

j
i ),

∑en
k=0 w

j
kgk(x

j
i )

η
] ∈ R

1×[DFT
+Dg ] (9)

where η is a scaling factor.

Fine tune Layer As in previous works (Ma et al. 2018a,b),

we pass Q(xj
i ) to the corresponding top MLP network for

fine-tuning, i.e.,
ŷji = Kj [Q(xj

i )] (10)

where Kj is top MLP for task j and ŷ is the predicted out-
put. We use ReLU activation for its better performance than
sigmoid and tanh (Krizhevsky, Sutskever, and Hinton 2012).

Since the importance of different scenarios on CRs varies,
we use a weighted cross entropy as the loss functions and
add l1-norm to control the model complexity, i.e.,

L=−
∑
∀i,j

βj ·[yji log ŷji +(1− yji ) log(1− ŷji )]+λΩ(θ)

(11)
where βj denotes the weight of task j and Ω(θ) is the regu-
larization for network parameters.

Discount Estimator Design
Discount Estimator learns a transformation (i.e., discount
factor γ) for the conversion rate to simulate different ranks.
Given the complexity between impression and rank, it takes
a reinforcement learning based approach to derive the trans-
formation as a set of policies. This way, it can estimate the
corresponding impression based on the predicted conversion
rate for calculating the total revenue.

Discounted Conversion Rates We reformulate the calcu-
lation of total revenue in Eq. (1) by introducing Zj(i) =
γj(i)CRj(i), the discounted conversion rate, where γj(i) is
the discount factor for product i in task j. Importantly, rank-
ing and impression of products are based on the discounted
conversion rates rather than the original ones. Accordingly,
we can estimate the corresponding impression under differ-
ent ranks by reusing the predicted CR from historical data.
Hence there is no need to deploy a recommendation system
online to collect new training data for Rev, which may harm
the actual revenue (Pei et al. 2019).

Ranking products based on the discounted conversion rate
may change their impression orders and thus, affects CRj(i)
(Craswell et al. 2008). Therefore, we cannot directly use the
predicted CRj(i) after changing ranks to estimate the total
revenue as in Eq. (1). To solve this problem, we use a debi-
ased direct measure (DDM) based on the direct measure to
estimate CRj(i) (Langford, Li, and K 2011). Specifically,
we introduce ρ to alleviate the CR bias incurred by impres-
sion positions. Suppose H is the estimated conversion rate
if products are ranked based on Z, then we have:

Hj(i) =

∑
∀u ρ

j(rank(Zj
u(i)))·CRj

u(i)·Iju(i)Z∑
∀u I

j
u(i)Z

(12)
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Figure 4: Workflow of discount estimator. It is initialized by
a randomly chosen state Sj(0). Then action aj(t) is updated
based on the environmental feedback of episode t and t− 1.
The process ends when

∑
∀i,u ΔRj

u(i) < ε.

where Iju(i)Z is the impression function based on Zj
u(i). ρ

j

is the position bias of impression estimated from the data,
which can be obtained statistically (Guo et al. 2019).

Accordingly, the total revenue can be reformulated as:

Rev =
∑
∀i,j

Ij(i)Z ∗Hj(i) ∗ P (i) (13)

Learning Discount Factor It is non-trivial to obtain a
closed-form expression for γ to directly optimize Eq. (13)
since Ij(i)Z and Hj(i) are not continuous. However, for
each γ and CRj(i), we can directly obtain Ij(i)Z and Hj(i)
from testing on the data set. By testing different γ, we can
obtain a series of revenue values to select the optimal γ that
maximizes Rev. This process of learning γ can be catego-
rized as a sequential decision-making process, where Rev
is used as feedback to update the optimal γ through trial
and error. Thus, we formulate the problem as a reinforce-
ment learning process and resort to REINFORCE algorithm
(Williams 1992) to learn the discount factor. With out loss of
generality, we use task j to show the learning process, since
the definitions and update schemes are identical for all tasks.
Fig. 4 illustrates the workflow.

• State S: The triad {Ij(i)Z , Hj(i), γj(i)} denotes the
state S in the learning process. Following Eq. (2), we se-
lect top-M j in the candidate sets to calculate Iju.

• Action a: An action a is defined as the change of
γ. We denote the action for episode t as aj(t) =
{Δγj(0, t), ...,Δγj(N, t)}, where N denotes the number
of total product candidates. The discount factor in episode
t+1 can then be calculated as γj(t+1) = γj(t)+aj(t).

• Reward R: We define the reward as the total revenue in
the current episode w.r.t γ. Notice that once we choose
an action, new state should be tested on the whole data to
obtain the reward. Accordingly, it is practical to treat the
revenue provided by each sample equally. Therefore, the
total reward can be calculated as:

Rj(t) =
∑
∀i,u

Ij(i, t)Z ∗Hj
t (i, t) ∗ P (i) (14)

where variable t denotes the calculation is based on γj(t).

We use REINFORCE (Williams 1992) for the learning
process, since the policies are learned from environmental

feedbacks and we follow the policy gradient for optimiza-
tion. In general, the optimization can be calculated as:

γ ← γ + α∇θ log π(θ)vt (15)

where π is the policy function and vt is the guiding vec-
tor for the update. In our case, we use the average reward
change ΔRj(t) = [ΔRj(0, t), ...,ΔRj(N, t)] as the guid-
ing vector, where ΔRj(k, t) denotes the average signed rev-
enue improvement for product k in episode t. We also use
the difference of γ between two adjacent episodes to calcu-
late ∇θ log π(θ). Combining Eq. (15) and Eq. (14), we have
the following optimization equation:

γj(t+1)←γj(t)+αΔRj(t) log
γj(t)

γj(t− 1)
(16)

where log γj(t)
γj(t−1) denotes the element-wise division of two

γ. By moving γj(t) to the left, we can readily obtain
the aj(t) for current episode. The learning process stops
when

∑
∀i ΔRj(i, t) < ε, where ε is a predefined hyper-

parameter.

Experiments
In this section, we first describe the basic settings for the ex-
periments. Then we show both offline and online evaluation
results to demonstrate the effectiveness of RevMan.

Experimental Settings
Datasets Our dataset consists of 5.6 million online sam-
ples collected from the impression and conversion logs of a
major online insurance platform in China.The samples come
from four separate sales scenarios:

• Special Sale Page (Scenario 1). This sales scenario is for
loyal customers who already know the platform. The sam-
ple size is 3, 908, 386.

• Paid User Page (Scenario 2). This sales scenario is for
subscribed users. The sample size is 183, 848.

• Policy Info Page (Scenario 3). This sales scenario is for
users on the platform who have not subscribed a product.
The sample size is 414, 318.

• Children Product Page (Scenario 4). This sales scenario is
dedicated to customers who want to buy insurance prod-
ucts for their children. The sample size is 1, 157, 392.

Note that for each impression on a user, there may exist mul-
tiple products. Like previous works (Pan et al. 2019; Ma
et al. 2018b), we treat each pair of user and impressed prod-
uct as an impression sample. As mentioned before, we also
include contextual features, like sales scenario and time, in
each sample. For conversion, we use the subscription of a
product as a positive sample. We use the first 80% samples
for training, and the remaining 20% for testing.

Metrics We conduct both online and offline evaluation. In
offline evaluation, we first use AUC, Recall@N and NDCG
to assess the ranking performance of RevMan, compared
with different methods. In addition, we also evaluate the
performance of RevMan in revenue improvement, i.e., w/o
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Dataset Model Scenario 1 (N=3) Scenario 2 (N=2) Scenario 3 (N=5) Scenario 4 (N=3)
AUC Recall@N NDCG AUC Recall@N NDCG AUC Recall@N NDCG AUC Recall@N NDCG

Train

LR 0.8345 0.6205 0.6377 0.6902 0.3395 0.5107 0.8446 0.7211 0.5321 0.8516 0.8105 0.7754
Wide&Deep 0.8842 0.6467 0.6767 0.7291 0.3815 0.5821 0.8655 0.7358 0.5526 0.8631 0.8249 0.7913
BSM 0.8599 0.6454 0.6844 0.7180 0.3701 0.5703 0.8690 0.7346 0.5559 0.8653 0.8234 0.7906
CoNet 0.8742 0.6316 0.6626 0.7045 0.3526 0.5370 0.8634 0.7554 0.5942 0.8593 0.7742 0.7838
MMoE 0.8836 0.6483 0.6784 0.7231 0.3605 0.5634 0.8718 0.7843 0.6663 0.8731 0.8482 0.7936
SAMN 0.8857 0.6586 0.6841 0.7336 0.4101 0.6118 0.8805 0.8601 0.6740 0.8768 0.8515 0.7947

Test

LR 0.8237 0.6097 0.6455 0.6351 0.3335 0.5109 0.7821 0.7703 0.4456 0.7952 0.7201 0.7355
Wide&Deep 0.8268 0.6394 0.6569 0.6536 0.3734 0.5781 0.7958 0.7784 0.4936 0.8047 0.8076 0.7589
BSM 0.8283 0.6458 0.6609 0.6459 0.3667 0.5286 0.8011 0.7816 0.5564 0.8032 0.7680 0.7535
CoNet 0.8262 0.6328 0.6578 0.6405 0.3423 0.5235 0.8023 0.7927 0.5994 0.8001 0.7326 0.7488
MMoE 0.8320 0.6407 0.6634 0.6444 0.3567 0.5255 0.8041 0.8196 0.6604 0.8077 0.8180 0.7600
SAMN 0.8355 0.6543 0.6716 0.6597 0.3853 0.6026 0.8078 0.8278 0.6734 0.8127 0.8184 0.7628

Table 1: Comparison of ranking performance on the dataset of four scenarios. The best results are marked in bold.

Figure 5: Offline evaluation in revenue improvement of
RevMan. Compared with SAMN, RevMan achieves 11.3%,
6.1%, 7.8% and 3% revenue improvement in the four sce-
narios respectively.

the discount estimator. In online evaluation, we conduct A/B
tests to validate the improvement of RevMan in conversion
rate and revenue, compared with our online baseline. Fur-
ther, we also use online behaviors of two popular products
to illustrate the impacts of RevMan.

Compared Methods We compare the performance of
RevMan with the following methods.

• LR (Mcmahan et al. 2013). Logistic regression is a widely
used shallow model for CR prediction. It is also our online
baseline. For each task in offline evaluation, we use the
same parameter settings as online.

• Wide&Deep (Cheng et al. 2016). Wide&Deep is a deep
neural network designed for CR prediction. We use its
feature interaction method as the interaction layer.

• Bottom-Shared Network (BSM). We build a network
from (Ma et al. 2018b), where the embedding layer is
trained on all data. We adapt the model by building in-
dependent MLPs in fine tune layer for each task.

• CoNet (Hu et al. 2018). It uses a sparse weight matrix to
enable feature sharing. We insert this matrix between the
interaction layer and the fine tune layer for each task pair.

• MMoE (Ma et al. 2018a). It is similar to BSM, where a set
of bottom networks are shared for all tasks. The difference
is that the output vector from interaction layer is weighted
sum over bottom network based on the input features.

During training, we use Adam (Kingma and Ba 2015) as
the optimizer. For each model, the relevant hyper-parameters
e.g., neurons per layer, are empirically tuned. During testing,
the learning rate is set to lr = 0.002 in order to control
the update step. We assign [0.5, 0.1, 0.2, 0.2] as the weight
vector in the loss function Eq. (11) and set ε = 100 as the
stop condition.

Offline Evaluation
First, we compare the ranking performance of SAMN, i.e.,
the multi-task ranking model of RevMan at stage I, with the
five methods above. Based on the best parameters derived
from the offline trials, the experimental results are shown in
Table 1. Compared with the best performance of the state-of-
the-arts, SAMN achieves 0.42%, 0.93%, 0.46% and 0.62%
AUC improvement in the four scenarios. The performance
gain of SAMN over the rest is most notable in Scenario 2.
This may be due to (i) Scenario 2 has the fewest samples
since it focuses on paid users; (ii) the adaptive feature shar-
ing mechanism in SAMN enables more effective experience
sharing from other tasks. We can see that the improvement
of Recall@N and NDCG is also the most significant in Sce-
nario 2, demonstrating that the structure design in SAMN is
effective in alleviating the data sparsity problem.

Then we show the effectiveness of RevMan in maximiz-
ing the total revenue. For fair comparison, we use SAMN as
the baseline to check whether the discount factor γ can im-
prove the total revenue. We use Eq. (13) for revenue calcula-
tion and the position bias factor ρ is obtained when p < 0.05.
As shown in Fig. 5, by using γ, the revenue increases by
11.3%, 6.1%, 7.8% and 3% compared with SAMN. The
discount factor γ promotes the impression chance of those
high-price products with less exposures properly, so that the
total revenue can be increased.

Online Evaluation
The online A/B tests are conducted in four scenarios for
seven days. The incoming customers are randomly chosen
to alleviate the bias of data distribution.
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Figure 6: Online A/B Test. The performance of baseline is
normalized to 1.0 for both CR and revenue.

First, we examine the overall performance of RevMan.
As shown in Fig. 6, RevMan achieves 16.2%, 7.2%, 7.15%
and 2.7% revenue improvement in those four scenarios com-
pared with the baseline. RevMan also increases the conver-
sion rate by 3.98%, 1.04%, 1.26% and 1.05% in the four
scenarios. Although the performance of RevMan fluctuates,
the p-value of collected improvement data is below 0.05, in-
dicating the revenue improvement is reliable. The revenue
improvement is lower in Scenario 4. This may be due to
the limitations of product candidates given scenario design
logic. With fewer products to recommend, the effectiveness
of discount factor is less than those in other scenarios.

We then conduct a case study to examine the impres-
sion change after applying RevMan. We use Scenario 1 as
the target since it has the largest number of visiting cus-
tomers among the four scenarios. For comparison, we track
two popular products: one has lower prices but high con-
version rate, i.e., G1, and the other G2 is the opposite. As
shown in Fig. 7, the impression coverage of G1 is much
higher than that of G2 before applying RevMan, since pre-
vious baseline focuses solely on conversion rate. After in-
troducing RevMan, the results show that the recommenda-
tions are more effective. G2 gets more impression coverage,
with slightly affected conversion rate. On the other hand, the
conversion rate of G1 is also increased by over 60%. This
observation indicates that RevMan can effectively improve
the total revenue by promoting the impression of high-price
products, while preserving overall conversion rate.

Related Work
Our work is relevant to the following categories of research.

Multi-task Recommendation. Recently, lots of works
have been proposed in this scope towards solving data spar-
sity (Ma et al. 2018b; Kitada, Iyatomi, and Seki 2019; Pan
et al. 2019) or modeling multi-objectives (Ma et al. 2018a;
Ma et al. 2019; Hu et al. 2018). In (Ma et al. 2018b), an
embedding share method is proposed to jointly train click-
through rate and conversion rate. The loss functions of those
two tasks are combined to improve the performance for con-
version rate prediction. CoNet (Hu et al. 2018) utilizes a
weight matrix to control the feature sharing among differ-
ent tasks. (Wang et al. 2019b) propose a knowledge-graph
based approach to enable feature sharing among different
tasks. However, it needs rich data to achieve acceptable per-

Figure 7: Case study of two products of scenario 1 in online
A/B Test. G2, with higher price, gets more impression with
RevMan. Comparison on CR shows RevMan improves the
recommendation efficiency for both G1 and G2.

formance, which is inapplicable in our scenario.
In summary, existing studies adopt static feature sharing

among different tasks, which fails to capture the complex
task relatedness. In contrast, we propose SAMN to adap-
tively learn the feature representations for each task, so as to
improve the overall recommendation performance.

Recommendation Economics. The economics of recom-
mendation is important since it is directly related to the rev-
enue of companies. In (Zhang et al. 2016), an algorithm for
surplus maximization is proposed. In (Zhao et al. 2017),
researchers propose an algorithm focusing on maximizing
the unit utility of recommended products. Similar idea is
adopted in (Ge et al. 2019). A recent work (Pei et al. 2019)
proposed to generalize the values of different behaviors to-
gether so that they can be modeled in the same framework.

These theoretical efforts are often impractical in practice
since they fail to solve important revenue related issues,
e.g., modeling complex relationships between conversion
rate and impression, etc. In our work, we propose a practical
mechanism, i.e., discount factor estimator, to fully consider
those revenue related issues. Furthermore, we design an ef-
ficient RL algorithm to learn the best ranks for maximizing
the total revenue.

Conclusion
In this paper, we propose RevMan, the first online insurance
recommendation system that maximizes the total revenue.
RevMan is a two-stage design. At stage I, a Selective At-
tentive Multi-task Network (SAMN) is proposed to enable
adaptive feature sharing among different tasks, so as to learn
from sparse training data. Based on the model of stage I, we
design a discount estimator to learn the discount factor γ on
the predicted conversion rate. With an offline RL algorithm,
new ranks of products can be estimated towards maximiz-
ing the total revenue. Extensive offline and online experi-
ments demonstrate the effectiveness of RevMan in compari-
son with the-state-of-the-arts.
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